Thermal denaturation and aggregation of hemoglobin of Glossoscolex paulistus in acid and neutral media.
نویسندگان
چکیده
The thermal denaturation and aggregation of the HbGp, in the oxy- and cyanomet-forms, was investigated by DSC, AUC, DLS, optical absorption and CD, in the pH range from 5.0 to 7.0. Oxy-HbGp has a denaturation process partially reversible and dependent on the temperature. DSC melting curve is characterized by a single peak with T(c) value of 333.4 ± 0.2K for oxy-HbGp, while two peaks with T(c) values of 332.2 ± 0.1 and 338.4 ± 0.2K are observed for cyanomet-HbGp, at pH 7.0. In acidic pH oxy- and cyanomet-HbGp are more stable showing higher T(c) values and aggregation. AUC data show that, HbGp, at pH 7.0, upon denaturation, remains undissociated at 323 K, presenting oligomeric dissociation at 333 (12 ± 3% of tetramer and 88 ± 5% of whole HbGp) and 343 K (70 ± 5% of monomer and 30 ± 2% of trimer). DLS data show that the lag period before aggregation is dependent on the temperature and HbGp concentration. Optical absorption and CD results show that the increase of temperature leads to the oxy-HbGp oxidation and aggregation, above 331 K, in acidic pH. CD data, for HbGp, present a greater thermal stability in acid medium than at neutral pH, with similar T(c) values for both oxidation forms. Our data are consistent with previous studies and represents an advance in understanding the thermal stability of oligomeric HbGp structure.
منابع مشابه
On the temperature stability of extracellular hemoglobin of Glossoscolex paulistus, at different oxidation states: SAXS and DLS studies.
Glossoscolex paulistus hemoglobin (HbGp) was studied by dynamic light scattering (DLS) and small angle X-ray scattering (SAXS). DLS melting curves were measured for met-HbGp at different concentrations. SAXS temperature studies were performed for oxy-, cyanomet- and met-HbGp forms, at several pH values. At pH 5.0 and 6.0, the scattering curves are identical from 20 to 60 °C, and Rg is 108 Å, in...
متن کاملOn the stability of the extracellular hemoglobin of Glossoscolex paulistus, in two iron oxidation states, in the presence of urea.
The stability of the Glossoscolex paulistus hemoglobin (HbGp), in two iron oxidation states (and three forms), as monitored by optical absorption, fluorescence emission and circular dichroism (CD) spectroscopies, in the presence of the chaotropic agent urea, is studied. HbGp oligomeric dissociation, denaturation and iron oxidation are observed. CD data show that the cyanomet-HbGp is more stable...
متن کاملThermal Inactivation and Aggregation of Lysozyme in the Presence of Nano- TiO2 and Nano-SiO2 in Neutral pH
Protein aggregation is a problem in biotechnology. High temperature is one of the most important reasons to enhance enzyme inactivation and aggregation in industrial systems. This work focuses on the effect of TiO2 and SiO2 nanoparticles on refolding and reactivation of lysozyme. In the presence of TiO2 and SiO2 nanoparticles, after enzyme heat treatm...
متن کاملUrea-induced unfolding of Glossoscolex paulistus hemoglobin, in oxy- and cyanomet-forms: a dissociation model.
The urea effect on the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) stability was studied by analytical ultracentrifugation (AUC) and small angle X-ray scattering (SAXS). AUC data show that the sedimentation coefficient distributions curves c (S), at 1.0 mol/L of urea, display a single peak at 57 S, associated to the undissociated protein. The increase in urea concentration, ...
متن کاملCrystallization and preliminary structural analysis of the giant haemoglobin from Glossoscolex paulistus at 3.2 Å
Glossoscolex paulistus is a free-living earthworm encountered in south-east Brazil. Its oxygen transport requirements are undertaken by a giant extracellular haemoglobin, or erythrocruorin (HbGp), which has an approximate molecular mass of 3.6 MDa and, by analogy with its homologue from Lumbricus terrestris (HbLt), is believed to be composed of a total of 180 polypeptide chains. In the present ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of biological macromolecules
دوره 54 شماره
صفحات -
تاریخ انتشار 2013